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Abstract

Simulated climate dynamics, initialized with observed conditions is expected to be syn-
chronized, for several years, with the actual dynamics. However, the predictions of
climate models are not sufficiently accurate. Moreover, there is a large variance be-
tween simulations initialized at different times and between different models. One way5

to improve climate predictions and to reduce the associated uncertainties is to use an
ensemble of climate model predictions, weighted according to their past performance.
Here, we show that skillful predictions, for a decadal time scale, of the 2 m-temperature
can be achieved by applying a sequential learning algorithm to an ensemble of decadal
climate model simulations. The predictions generated by the learning algorithm are10

shown to be better than those of each of the models in the ensemble, the better per-
forming simple average and a reference climatology. In addition, the uncertainties as-
sociated with the predictions are shown to be reduced relative to those derived from
equally weighted ensemble of bias corrected predictions. The results show that learn-
ing algorithms can help to better assess future climate dynamics.15

1 Introduction

A group of global climate simulations, referred to as the decadal experiments, was intro-
duced in the Coupled Model Intercomparison Project (CMIP5) multi-model ensemble
(Taylor et al., 2012; Meehl et al., 2009). The idea behind these experiments was to
investigate the predictability of the climate by atmosphere ocean general circulation20

models (AOGCMs) in time scales of up to 30 years.
The AOGCMs were initialized with interpolated observations of the ocean, sea ice

and atmospheric conditions, together with the atmospheric composition (Taylor and
Meehl, 2011). Therefore, they were expected to reproduce the monthly and annual
averages of the climate variables and the response of the climate system to changes25

in the atmospheric composition (Warner, 2011; Collins, 2007; Kim et al., 2012). Indeed,

7708

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 7707–7734, 2015

Climate predictions
using learning

algorithms

E. Strobach and G. Bel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

it was shown (Kim et al., 2012) that in some regions, the CMIP5 simulations have some
prediction skill. It was also confirmed (Kim et al., 2012) that the multi-model average
provides better predictions than each of the models, similar to what was found for
other climate simulations (Doblas-Reyes et al., 2000; Palmer et al., 2004; Hagedorn
et al., 2005; Feng et al., 2011). However, the simple multi-model average does not take5

into account the quality differences between the models; therefore, it is expected that
a weighted average, with weights based on the past performances of the models, will
provide better predictions than the simple average. As expected, it was shown that the
weighted average of climate models can improve predictions when using ensembles of
AGCMs (Rajagopalan et al., 2002; Robertson et al., 2004; Yun et al., 2003), AOGCMs10

(YUN et al., 2005; Pavan and Doblas-Reyes, 2000; Chakraborty and Krishnamurti,
2009) and regional climate models (Feng et al., 2011; Samuels et al., 2013).

The uncertainties in climate predictions can be attributed to three main sources –
internal variability of the model, inter-model variability and future forcing scenario un-
certainties. The internal variability of the model stems from the sensitivity of the model15

to the initial conditions, sensitivity to the values of the parameters and the discretiza-
tion method used. The inter-model variability is the result of different parameterization
schemes and modeling approaches adopted in different models. The uncertainties due
to different forcing scenarios are mostly related to different scenarios assumed regard-
ing future greenhouse gas emissions. On a decadal time scale, forcing scenario uncer-20

tainties and uncertainties due to the internal variability of each model are considerably
smaller than the inter-model uncertainties (Meehl et al., 2009; Hawkins and Sutton,
2009) (we also verified that the internal variability of each of the models we used is
much smaller than the inter-model variability). Therefore, estimation of the uncertain-
ties from ensemble of climate models is expected to give a meaningful estimation of25

the total climate prediction uncertainties.
Different methods were used to improve climate predictions using an ensemble of

models. A common approach is the simple regression (Krishnamurti et al., 2000; Krish-
namurti, 1999). The regression does not assign a weight to each member of the ensem-
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ble but rather attempts to find the set of coefficients yielding the minimal square error
for a linear combination of the ensemble model predictions. Bayesian methods have
also been used for weighting ensembles of climate model projections (Rajagopalan
et al., 2002; Robertson et al., 2004; Tebaldi and Knutti, 2007; Smith et al., 2009; Buser
et al., 2009, 2010). The weighting scheme of these methods relies on a certain distri-5

bution of the errors and other prior assumptions regarding the models; these assump-
tions are not necessarily valid for climate dynamics and predictions. Many variations
of the Bayesian methods were applied to weather forecasting in order to establish the
ensemble of models (Kalnay et al., 2006); these methods are less useful for climate
predictions in which the variability between different models is larger than the internal10

variability of each model (Meehl et al., 2009; Hawkins and Sutton, 2009). Here, we use
a sequential learning algorithm (SLA) method, which is adopted from the field of game
theory (Cesa-Bianchi and Lugosi, 2006; Mallet et al., 2009; Mallet, 2010), to weight en-
semble members of global climate models. It is important to note that the SLA method
assigns real weights (taking values between zero and one) to the ensemble models15

rather than to future climate paths (it is straightforward to use the weights of the models
to get the probabilities of future climate paths which are common in the Bayesian ap-
proaches); this characteristic makes the SLA method appropriate for model evaluation.
The SLA method has several advantages compared with other weighting schemes:
(i) it makes no assumptions regarding the distribution of the climate variables and the20

model parameters. Therefore, it can be used for all climate variables and all types of
predictions; (ii) there is an upper bound for the deviation of the weighted ensemble
average from the best model. For a sufficiently lengthy learning period (the duration
of this period depends on the variable, the learning rate (which is described later) and
the number of models in the ensemble), the SLA prediction is at least as good as25

the prediction of the best model in the ensemble; (iii) the weights can be dynamically
updated, when new measurements are introduced, with no significant computational
cost. The original method (Cesa-Bianchi and Lugosi, 2006) was modified and adjusted
to improve decadal climate predictions.
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2 The sequential learning algorithm

The sequential learning algorithm (SLA) assigns weights to the climate models (the
experts) in the ensemble based on their past performance. In this work, the output of
the models was divided into two periods – a learning period during which the weights
were updated and a prediction period during which the weights remained fixed and5

equal to the weights assigned by the SLA in the last step of the learning process. In
order to capture the spatial variability in model performance, the weights were spatially
distributed and the weight of each model in each grid cell was determined by the local
past performance of the model. For the sake of clarity, the algorithm is described below
without spatial indexes although the calculations were done for each grid cell sepa-10

rately. The prediction of the SLA forecasters is the weighted average of the ensemble
(Cesa-Bianchi and Lugosi, 2006). The weights are assigned to minimize the cumulative
regret with respect to each one of the climate models. The cumulative regret of expert
E is defined as:

RE ,n ≡
n∑
t=1

(l (pt,yt)− l (fE ,t,yt)) ≡ Ln −LE ,n. (1)15

t is a discrete time, l denotes some loss function that is a measure of the difference
between the predicted (pt by the forecaster and fE ,t by expert E ) and the true (yt)
values. In this work, we defined the loss function to be the square of the difference
between the forecaster prediction and the “real” value, namely, l (pt,yt) ≡ (pt−yt)

2. Ln ≡∑n
t=1l (pt,yt), LE ,n ≡

∑n
t=1l (fE ,t,yt) are the cumulative loss functions of the forecaster20

and expert E , respectively. The outcome of the forecaster, after n−1 steps of learning,
is weights assigned to the climate models in the ensemble to be used for forecasting
the value at t = n. The forecast for t = n is the weighted average of the climate models,
that is:

pn ≡
N∑
E=1

wE ,n−1(RE ,n−1) · fE ,n. (2)25
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Here, N is the number of models (experts) and wE ,n−1 is the weight of expert E ,
which is determined by the regret up to time n−1. We used two forecasters (weighting
schemes): the Exponentiated Weighted Average (EWA) and the Exponentiated Gradi-
ent Average (EGA). The EWA weight is defined as:

wE ,n ≡
e−η·RE ,n∑N
E=1e

−η·RE ,n
(3)5

and its prediction at time n is:

pn =

∑N
E=1e

−ηLE ,n−1fE ,n∑N
E=1e

−ηLE ,n−1

. (4)

The EGA is similar to the EWA but with the cumulative regret calculated from the sum-
mation of the loss gradients. The cumulative regret for the EGA forecaster is defined
as:10

RGE ,n ≡
n∑
t=1

l ′(pt,yt)−
n∑
t=1

l ′(fE ,t,yt) ≡ LGn −LGE ,n (5)

where,

l ′(pt,yt) ≡
∂l (pt,yt)
∂wE ,t−1

= 2 · (pt − yt) · fE ,t. (6)

For both forecasters, η > 0 is a parameter representing the learning rate. The devia-
tion between the forecast and the “real” trajectory was quantified using the root mean15

square error (RMSE). The RMSE of a grid cell with coordinates (i , j ), over a period of
n time steps (months in our case), is defined as:

RMSE(i , j ) ≡

√√√√(1/n) n∑
t=1

(pt(i , j )− yt(i , j ))2, (7)
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where pt(i , j ) is the value predicted by the forecaster and yt(i , j ) is the “real” value. The
global, area-weighted RMSE is defined as:

GRMSE ≡
(
1/AEarth

)∑
i ,j

Ai ,jRMSE(i , j ), (8)

where AEarth is the earth’s surface area and Ai ,j is the area of the (i , j ) grid
cell. The learning rate, η, was chosen to minimize the metric M ≡ RMSE · (1+5

floor (max(∆w/∆t)/(1/N))) during the learning period. This metric provides a minimal
deviation of the forecast climate trajectory from the observed one and also ensures
stable weights of the models (a significant change in the weight of a model was con-
sidered the weight a model would be assigned in the absence of learning). We also
tested optimization of η using only a fraction of the learning period and found that as10

long as the optimization period was of the same order of the prediction period, there
was no significant change in the outcome. An important difference between the EWA
and EGA methods is that after a long enough learning period under ideal conditions
(stationary time series), the former converges to the best model while the latter con-
verges to the “real” value assuming that the real value is known. Figure 1 illustrates this15

difference using a simple case. This difference between the forecasters implies that for
long enough learning period, using an ensemble that includes one model that perform
better throughout the learning period, the weights will be distributed such that the pre-
diction of the EWA will be determined by this best model and the uncertainty will be
very small (due to the small weights of the other models). Under the same conditions,20

the EGA would still assign more significant weights to the other models in order to ex-
tract the information they contain regarding the dynamics of the “real” value and this
will lead to larger uncertainty (and often better predictions).

7713

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 7707–7734, 2015

Climate predictions
using learning

algorithms

E. Strobach and G. Bel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Improved predictions

We consider an ensemble of eight global climate models for the period of 1981–2011,
whose results are part of the CMIP5 decadal experiments (Taylor and Meehl, 2011).
Table 1 describes the eight models that we used in this study. These models were first
linearly interpolated to the spatial resolution of the NCEP/NCAR reanalysis data using5

the NCAR command language (NCL) (NCL, 2011). We focus on the model predictions
of the 2m-temperature. The decadal experiments of the CMIP5 project include a set of
runs for each of the models, representing different initial conditions. In agreement with
the common knowledge (Meehl et al., 2009), we found that on decadal time scales,
the internal variability of each model is smaller than the variability between the models.10

Therefore, we chose, arbitrarily, the first run for each of the ensemble models. The re-
sults presented here are based on a learning period of 20 years (1981–2001), followed
by predictions for 10 year (2001–2011) validation period.

The learning period served for both learning (i.e., weight assignment) and also to
correct the bias of the models. This was simply done by subtracting the average of each15

of the models during the learning period and adding the average of the NCEP/NCAR
reanalysis data (Kalnay et al., 1996) (considered here as reality). This bias correction
was applied to each grid cell separately. The bias correction was done to assure that
the improvement achieved by the forecasters is beyond the impact of a simple bias
correction. In addition, we chose a long enough learning period to ensure that our20

results are not affected by the drift of the models from the intial condition toward their
climate dynamics (Meehl et al., 2009).

The performance of the models was determined by comparing the model predictions
to the NCEP/NCAR reanalysis data (Kalnay et al., 1996). We are aware of the spurious
variability and trends in the NCEP data and of other reanalysis projects (Uppala et al.,25

2005; Onogi et al., 2007); however, in order to demonstrate the capability of the SLA to
improve global and regional climate predictions, the reanalysis data is the best dataset.
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Using the predictions of the climate models only 20 years after they were initialized
can debate their ability to generate skillful predictions since it is believed that climate
models’ skill tends to vanish after that long a period. However, we found that, for most
of the models we used, this is not the case. This fact is illustrated in Fig. 2, which shows
that the globally averaged RMSE of most of the climate models did not increase con-5

siderably during the 30 year-long simulations. Another noticeable and important feature
of the climate models of the CMIP5 is the fact that, globally, climatology performs much
better than each of the models. In Sect. 5 we show that, despite this fact, the SLA
can use the models and the climatology to provide a forecast which is better than the
climatology.10

Three forecasting methods (forecasters) were tested: the Exponentiated Weighted
Average (EWA), the Exponentiated Gradient Average (EGA) and a simple average.
The simple average represents no learning and is presented to illustrate the superior
performance of the SLA. The performance of the forecasters is measured by the root
mean square error (RMSE), during the validation period, which quantifies the deviation15

of the predicted climate trajectory from the observed one.
Figure 3 shows the RMSE in the 2m-temperature monthly average prediction, during

the 10 year validation period, for each grid cell. Panels a, b and c correspond to the
RMSE of the EWA, EGA and simple average weighting schemes, respectively. Both
the EWA and the EGA forecasters give better predictions than the simple average.20

The improvement achieved by the two forecasters, compared with the simple average,
is more apparent close to the poles and in western South America. In these regions,
the models deviate more from each other and the weighting schemes favor those that
perform better. Over the oceans and low to mid latitudes the models showed better
agreement and therefore the weighting schemes did not yield a large improvement.25

The global, area-weighted RMSE can be used to quantify the improvement achieved
by the SLA forecasters, that is, 1.316 ◦C for the EWA, 1.297 ◦C for the EGA and 1.390 ◦C
for the simple average. Since the EWA has the tendency to converge to the best model
(if the ensemble includes a model that is always better than the others in certain re-
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gions), we also compare the performance of the EWA and EGA forecasters with two
forecasting methods that predict according to the best model (defined as the model that
was assigned the highest weight according to the EWA or the EGA) in each grid cell.
The global, area-weighted RMSE was found to be 1.568 ◦C for the best model based
on the EWA and 1.633 ◦C for the best model based on the EGA. These results show5

that the SLA forecasters outperform the best models in the ensemble. In general, we
found that a longer learning period improves the predictions of the forecasters. Figure 4
shows that the area-weighted RMSE of the forecasters (during the validation period)
is reduced when the learning period is extended. By increasing the learning rate we
found that shorter learning periods can be selected with no significant increase in er-10

ror; however, we chose a learning period which is of the order of the prediction period
in order to capture the climate dynamics in all the time scales that are relevant to the
prediction period.

4 Reduced uncertainties

The weights obtained from the SLA method can be used to better estimate the uncer-15

tainties of the predictions. The uncertainties are quantified by the square root of the
time average of the weighted variance of the ensemble. This quantity (for a period of n
time steps) in the (i , j ) grid cell is defined as:

STD(i , j ) ≡

√√√√(1/n)
n∑
t=1

N∑
E=1

wE (i , j )(fE ,t(i , j )−pt(i , j ))2. (9)

Here, fE ,t(i , j ) is the prediction of model E for grid cell (i , j ), at time t; pt(i , j ) is the20

prediction of the forecaster for grid cell (i , j ), at time t (i.e., the weighted average of
all the models); and wE (i , j ) is the weight assigned to model E at grid cell (i , j ) (the
weights remain constant during the validation period for which the STD is calculated).

7716

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 7707–7734, 2015

Climate predictions
using learning

algorithms

E. Strobach and G. Bel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The global, area-weighted uncertainty is defined as:

GSTD ≡
(
1/AEarth

)∑
i ,j

Ai ,jSTD(i , j ). (10)

Figure 5 shows the uncertainty of the 2m-temperature during the validation period for
the three forecasting methods; panels a, b and c correspond to the EWA, EGA and sim-
ple average forecasters, respectively. It is important to note that this uncertainty is only5

due to the different predictions of the ensemble models; other sources of uncertainty
are not affected by our forecasting schemes. Both the EWA and EGA forecasters yield
smaller uncertainties than does the simple average. The improvement is significant in
regions where the uncertainties are larger, such as toward the poles and over South
America and Africa. The global, area-weighted, uncertainties are: 1.242, 1.381, and10

1.593 ◦C for the EWA, EGA and simple average forecasters, respectively. These val-
ues show that in addition to improving the predictions, the SLA forecasters also reduce
the uncertainties of these predictions. Note that the smaller uncertainty of the EWA
forecaster is simply due to the fact that this forecaster converges to the best model in
each grid cell (if the ensemble includes a model that is always the best). The uncer-15

tainty of the EGA provides a better estimate of the predictions uncertainty because its
predictions converges to the observations.

5 Skillful forecast

The skill of a forecaster may be defined as its ability to provide better predictions than
the reference climatology. In our study the natural choice is the climatology of the learn-20

ing period, that is:

Cm ≡
1
L

L∑
i=1

yi ,m, (11)
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where, yi ,m is the value of the variable (in this study it is the 2m-temperature as reported
in the reanalysis data) in the calendar month m of the year i ; the learning period dura-
tion is L years; and the climatology, Cm is just the average of that variable during the
L years. Prediction that is based on climatology assumes that for each month of the
prediction period, the value of the variable will be equal to the climatology of the cor-5

responding calendar month. Therefore, it is reasonable to expect that a skillful model
should provide more information on the variability of the climate than the average of
previous years (the climatology).

Figure 6a shows the differences between the 10 year RMSE of the 2m-temperature
monthly mean, of the climatology and of the EGA forecaster. Positive values represent10

locations where the EGA forecaster has a smaller RMSE and is, therefore, consid-
ered as a skillful forecaster. In most regions, the climatology performs better than the
EGA forecaster (and, obviously, better than the best model!); however, some regions
indicate the EGA’s advantage, such as eastern North America up to Greenland. We
found that the regions in which the EGA forecaster performs better are characterized15

by larger variability (which increases the deviations from the climatology). The global,
area-weighted RMSE is 1.188 ◦C for the climatology and 1.373 ◦C for the EGA. One
could conclude that the EGA forecaster is not skillful.

To circumvent this problem, we decided to add the climatology of the learning period
as an additional model to our ensemble. In Fig. 6b, we show the difference between the20

RMSE of the EGA forecaster, for the model ensemble that includes the climatology, and
the RMSE of the climatology itself. In this figure, one can see that the EGA forecaster,
for the model ensemble that includes the climatology, provides predictions that are at
least as good as the climatology over most of the globe. Adding the climatology to the
ensemble reduced the global, area-weighted RMSE of the EGA forecaster to 1.156 ◦C25

– a small improvement (a reduction of about 2.7%) over the climatology. The global,
area-weighted, uncertainties of the 10 year validation period in this case are: 0.118,
0.953, and 1.552 ◦C for the EWA, EGA and simple average forecasters, respectively.
Note, that as we mentioned earlier, the small uncertainty associated with the EWA
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forecaster is not representative of the climate prediction uncertainty. In what follows we
focus on significance of the results of the EGA forecaster.

6 Significance tests

There is more than one test that can be done to demonstrate the significance of
the results. We focus on testing whether the EGA forecaster improves the predic-5

tions beyond climatology (as shown earlier, each of the models performs poorer
than the climatology) and whether it reduces the uncertainties below those of equally
weighted ensemble. Both tests were done globally and regionally. We start by defin-
ing two properties. The first, is the difference between the absolute error of the cli-
matology and the absolute error of the EGA forecaster at a given grid cell and10

time point, that is – |(Ct(i , j )− yt(i , j ))| − |(pt(i , j )− yt(i , j ))|. The second is the differ-
ence between the uncertainties of the equally weighted ensemble and the ensem-
ble weighted according to EGA forecaster at a given grid cell and time point, that is

–
√

1
N

∑N
E=1(fE ,t(i , j )− f·,t(i , j ))2 −

√∑N
E=1wE (i , j ) · (fE ,t(i , j )−pt(i , j ))2 (the dot replacing

the E index, represents averaging over that index). For both quantities, positive val-15

ues represent better performance of the EGA forecaster. The 10 year validation period
yields for each of these quantities time series with 120 points in each grid cell. The
fraction of the time series (number of points out of the total 120) showing positive val-
ues can be used to test the significance of the improvement. We define a significant
improvement by the EGA forecaster to be when the number of successes are above20

66 (i.e., when the null hypothesis that the quantities defined above are symmetrically
distributed around zero is rejected with ∼ 90% confidence).

Figure 7 shows the spatial distributions of the number of positive values (out of the
total 120 time points) for the two quantities. The upper panel corresponds to the dif-
ference between the absolute error of the climatology and the EGA forecaster and25
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the lower panel corresponds to the difference between the uncertainties of the equally
weighted and EGA weighted ensembles.

The upper panel in Fig. 7 shows that there are large regions of improvement which
is more apparent over land, close to the poles and to the equator. The lower panel
shows that in regions in which the EGA reduces the uncertainty, it does so for almost5

all time points and vice versa. No correlation between significant improvement of the
predictions and significant reduction of the uncertainties was identified.

The global test we performed was done by calculating the area weighted average of
the two quantities defined above and to plot the histograms of their time series. These
are shown in Fig. 8. The upper panel shows the global average absolute error differ-10

ence between the climatology and the EGA forecaster and the lower panel shows the
global average difference between the uncertainties of the equally weighted and EGA
weighted ensembles. The x axis is in units of ◦C and is zero centered to emphasize
the non symmetric distribution of the data. The upper panel shows that there are only
11 negative values out of 120 and a positive peak at around 0.03 ◦C. The probability15

of more than 108 positive values out of 120 in a symmetric distribution with zero mean
is practically zero; therefore, we conclude that, globally, the EGA forecaster predicts
better than climatology. The uncertainties difference shows that the EGA forecaster
has lower uncertainty than equally weighted ensemble for all the time points and there-
fore we can also conclude that the reduction of the globally averaged uncertainties is20

significant.

7 Summary and discussion

The SLA method does not rely on any assumptions regarding the distributions of the
climate variables; therefore, it is robust and can be used for any climate variable. The
updating scheme of the weights does not require a considerable computational cost25

and allows for a fast and easy update of the weights when new measurements become
available. In the results presented here, we used the deviation from the trajectory of the
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climate variable as the metric for the weighting, but other weighting methods can also
be applied. For example, one can use a measure of the statistical distance such as
the Kullback–Leibler divergence (Kullback and Leibler, 1951) or the Jensen–Shannon
divergence (Manning and Schütze, 1999); a model that yields a probability density
function (PDF) which is closer to the measured PDF of a variable will get a higher5

weight.
One disadvantage of the SLA method (which may also be considered as an advan-

tage for some applications) is the fact that the weights are between zero and one. This
means that if the measurements are not spanned by the predictions of the models, the
SLA algorithm will not be able to track the measurements but would converge to the10

best model since by definition the SLA predictions are bounded by the predictions of the
models of the ensemble. In this case, other methods, such as the regression that can
yield any linear combination of the model predictions, may achieve better predictions
than the SLA forecasters but will not be able to reduce the ensemble uncertainties.

We showed that climate predictions (on a decadal time scale) of the 2m-temperature15

monthly average can be improved and that the associated uncertainties can be re-
duced using the EGA forecaster. The improved predictions and reduced uncertainties
considered here are only those arising from the variability between different models.
This is because the ensemble used in this study consists of only one run (correspond-
ing to one initial condition) of each of the models. The uncertainties due to the internal20

variability of each of the models remained unaffected. In principle, the SLA method
can be used to quantify the quality of different initialization methods. However, there is
no justification for weighting initial conditions generated by the same method at times
that are of the same order of magnitude before the prediction period. Therefore, the
SLA method cannot reduce uncertainties associated with the internal variability of the25

models.
The SLA method provided better predictions than each one of the models and their

simple average. All the models, including the simple average, considered in this study
showed no global skill; namely, in averaging over the globe, the climatology provided

7721

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/7707/2015/acpd-15-7707-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 7707–7734, 2015

Climate predictions
using learning

algorithms

E. Strobach and G. Bel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

a better prediction than each of the models. The SLA forecasters do not resolve this
issue unless the climatology is added as an additional model to the ensemble. When
the model ensemble includes the climatology, the SLA forecasters can yield better
predictions than the climatology itself by assigning high weight to the climatology in
the regions where the models fail and high weight to the best models in regions where5

they perform better than the climatology (namely, regions where the best models are
skillful).

The method and the results presented here provide performance-based, spatially-
distributed weights of climate models, which lead to improved climate predictions and
reduced uncertainties. These can be relevant for many applications in agriculture and10

ecology, and for decision makers and other stakeholders. The spatially-distributed
weights may also be used for testing new parameterization and physics schemes in
global circulation models.
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Table 1. Models Availability.

Institute ID Model Name Modeling Center (or Group) Grid (lat× lon)

BCC BCC-CSM1.1 Beijing Climate Center, China Meteo-
rological Administration

64×128

CCCma CanCM4 Canadian Centre for Climate Modelling
and Analysis

64×128

CNRM-CERFACS CNRM-CM5 Centre National de Recherches Me-
teorologiques/Centre Europeen de
Recherche et Formation Avancees en
Calcul Scientifique

128×256

LASG-IAP FGOALS-s2 LASG, Institute of Atmospheric
Physics, Chinese Academy of Sci-
ences

108×128

IPSL IPSL-CM5A-LR Institut Pierre-Simon Laplace 96×96

MIROC MIROC5
MIROC4h

Atmosphere and Ocean Research In-
stitute (The University of Tokyo), Na-
tional Institute for Environmental Stud-
ies, and Japan Agency for Marine-
Earth Science and Technology

128×256
320×640

MRI MRI-CGCM3 Meteorological Research Institute 160×320
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EWA to EGA Comparison

EGA

EWA

expert 1

expert 2

measurements

Figure 1. An ideal experiment with two experts. The first always predicts zero and the second
always predicts one. The true value is always 0.7. The EWA forecaster converges to the best
model (predicting one) while the EGA forecaster converges to the true value.
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Figure 2. Temporal evolution of the global and annual average of the 2m-temperature RMSE
for the eight climate models (after bias correction) and the climatology. During the 30 years of
the simulations, the skill of most of the models did not decline. In fact, a simple linear fit to the
models indicates that some of them increased their skill with time.
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Figure 3. 10 year RMSE of the 2m-temperature for three forecasting methods: (a) EWA, (b)
EGA, and (c) simple average. The colors represent the RMSE of each grid cell. Both SLA
forecasters yield a smaller global RMSE than the simple average. The improvements achieved
by the EWA and EGA forecasters, compared with the simple average, are more apparent close
to the poles and in southwestern America.
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Figure 4. Global, area-weighted RMSE of the 2m-temperature, during the 10 year validation
period, as a function of the learning time. The presented RMSE was calculated for the EGA
forecaster; however, a similar trend was obtained for the EWA. In general, a longer learning
period improves the forecaster predictions.
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Figure 5. The 2m-temperature uncertainty during the 10 year validation period for three fore-
casting methods: (a) EWA, (b) EGA, and (c) simple average. The uncertainties of the EWA are
smaller than those of the EGA; however, the predictions of the EGA are better (see the text for
a more detailed explanation). Both the EGA and the EWA forecasters yield smaller uncertain-
ties than the simple average. The uncertainties, corresponding to the SLA forecasting schemes,
are significantly reduced in regions where the uncertainties are larger, such as toward the poles
and over South America and Africa.
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Figure 6. The difference between the 10 year validation period average 2m-temperature RMSE
of the climatology and the EGA forecaster, (a) EGA with an ensemble that includes eight mod-
els, (b) EGA with an ensemble that includes the same eight models and also the climatology of
the learning period as an additional model. The results demonstrate that when the ensemble
includes the climatology, the EGA forecaster is skillful.
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Figure 7. The number of time points in which the EGA forecaster performs better. The upper
panel shows the spatial distribution of the number of time points in which the absolute error of
the EGA forecaster is smaller than that of the climatology. The lower panel shows the spatial
distribution of the number of time points in which the uncertainty of the EGA weighted ensem-
ble is smaller than that of the equally weighted ensemble. White circles represent significant
improvement by the EGA forecaster and black circles represent its significantly poorer perfor-
mance. Both quantities show better performance of the EGA forecaster over most of the glob.
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Figure 8. The histograms of the globally averaged differences of absolute error and uncertainty.
The upper panel shows the histogram of the globally averaged difference between the absolute
error of the climatology and that of the EGA forecaster. The lower panel shows the histogram
of the difference between the uncertainties of equally weighted and EGA weighted ensembles.
Both quantities show significantly improved performance of the EGA forecaster.
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